Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(10): 4833-4843, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373010

RESUMO

Na3Sc2-xRx(PO4)3 (R = Eu, Tb, Dy; 0 ≤ x ≤ 0.2) phosphors were synthesized by a high-temperature solid-state reaction. Sc : R ratios for the NSP:xR samples were determined by ICP-MS, EDX-SEM and TEM-EDX measurements. An X-ray diffraction study revealed that solid solutions with a NASICON-type structure were formed at 0 ≤ x ≤ 0.1. The luminescence properties of Na3Sc2(PO4)3 and Na3Sc2-xRx(PO4)3 (R = Eu, Tb, Dy) were studied in the range of 80-500 K. The highest R3+ luminescence intensity in Na3Sc2-xRx(PO4)3 (R = Eu, Tb, Dy) depending on R was found for x = 0.05 in the case of Dy and x = 0.1 in the case of Eu and Tb. The temperature behaviour of the R3+ emission intensity of Na3Sc2-xRx(PO4)3 (R = Eu, Tb, Dy) depends on R that replaces Sc. The decrease of the Eu3+ emission intensity depending on the transition energy by ∼26% and 18% at ∼420 K compared to TR allowed us to consider NSP:0.1Eu3+ as a suitable phosphor for pc-LEDs. The temperature dependence of the Dy3+ emission for NSP:0.05Dy3+ demonstrates a strong thermal quenching. Different temperature dependences of the Tb3+ emission intensity of NSP:0.1Tb3+ were found for two excitation bands at λex = 220 and 378 nm representing f-d and f-f intracentre transitions. No thermal quenching for f-f transitions takes place while the emission intensity for f-d transitions increases with a temperature rise from 80 to 500 K. The dielectric measurements for Na3Sc2(PO4)3 and Na3Sc1.9Eu0.1(PO4)3 were provided on ceramic pellets sintered under vacuum using a spark plasma sintering technique. Different dependences of conductivity were found for two samples. The calculated conductivity for Na3Sc1.9Eu0.1(PO4)3 with an R3̄c structure (σbulk = 6.4 × 10-5 S cm-1 at 300 K, 1.14 × 10-3 S cm-1 at 360 K and 5.0 × 10-2 S cm-1 at 500 K) is higher than that for pure α-Na3Sc2(PO4)3 but lower than that for ß- and γ-Na3Sc2(PO4)3.

2.
Materials (Basel) ; 16(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37763362

RESUMO

TmMgB5O10 spontaneous crystals were synthesized via the flux-growth technique from a K2Mo3O10-based solvent. The crystal structure of the compound was solved and refined within the space group P21/n. The first principles calculations of the electronic structure reveal that TmMg-pentaborate with an ideal not defected crystal structure is an insulator with an indirect energy band gap of approximately 6.37 eV. Differential scanning calorimetry measurements and powder X-ray diffraction studies of heat-treated solids show that TmMgB5O10 is an incongruent melting compound. A characteristic band of the Tm3+ cation corresponding to the 3H6 → 1D2 transition is observed in the photoluminescence excitation spectra of TmMg-borate. The as-obtained crystals exhibit intense blue emission with the emission peaks centered at 455, 479, 667, and 753 nm. The most intensive band corresponds to the 1D2 → 3F4 transition. TmMgB5O10 solids demonstrate the thermal stability of photoluminescence.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111004

RESUMO

UV-induced photoluminescence of organosilica films with ethylene and benzene bridging groups in their matrix and terminal methyl groups on the pore wall surface was studied to reveal optically active defects and understand their origin and nature. The careful selection of the film's precursors and conditions of deposition and curing and analysis of chemical and structural properties led to the conclusion that luminescence sources are not associated with the presence of oxygen-deficient centers, as in the case of pure SiO2. It is shown that the sources of luminescence are the carbon-containing components that are part of the low-k-matrix, as well as the carbon residues formed upon removal of the template and UV-induced destruction of organosilica samples. A good correlation between the energy of the photoluminescence peaks and the chemical composition is observed. This correlation is confirmed by the results obtained by the Density Functional theory. The photoluminescence intensity increases with porosity and internal surface area. The spectra become more complicated after annealing at 400 °C, although Fourier transform infrared spectroscopy does not show these changes. The appearance of additional bands is associated with the compaction of the low-k matrix and the segregation of template residues on the surface of the pore wall.

4.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837012

RESUMO

ß-Ca3(PO4)2-type phosphors Ca9-xMnxEu(PO4)7 have been synthesized by high-temperature solid-phase reactions. The crystal structure of Ca8MnEu(PO4)7 was characterized by synchrotron X-ray diffraction. The phase transitions, magnetic and photoluminescence (PL) properties were studied. The abnormal reduction Eu3+ → Eu2+ in air was observed in Ca9-xMnxEu(PO4)7 according to PL spectra study and confirmed by X-ray photoelectron spectroscopy (XPS). Eu3+ shows partial reduction and coexistence of Eu2+/3+ states. It reflects in combination of a broad band from the Eu2+ 4f65d1 → 4f7 transition and a series of sharp lines attributed to 5D0 → 7FJ transitions of Eu3+. Eu2+/Eu3+ ions are redistributed among two crystal sites, M1 and M3, while Mn2+ fully occupies octahedral site M5 in Ca8MnEu(PO4)7. The main emission band was attributed to the 5D0 → 7F2 electric dipole transition of Eu3+ at 395 nm excitation. The abnormal quenching of Eu3+ emission was observed in Ca9-xMnxEu(PO4)7 phosphors with doping of the host by Mn2+ ions. The phenomena of abnormal reduction and quenching were discussed in detail.

5.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769977

RESUMO

The decay kinetics of Gd3Al2Ga3O12:Ce3+ single crystal luminescence were studied under dense laser excitation. It was shown that the decay times as well as the intensity of Ce3+ luminescence depend on the excitation density. The observed effects were ascribed to the interaction between excitons as well as to the features of energy transfer from the excitons to Ce3+. The numerical simulation of the experimental results was performed for justification of the proposed model.

6.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615547

RESUMO

In this study, a new series of phosphors, Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0.00−1.00, step dx 0.05), was synthesized, consisting of centro- and non-centrosymmetric phases with ß-Ca3(PO4)2-type structure. Crystal structures with space groups R3c (0.00 ≤ x < 0.35) and R3¯c (x > 0.8) were determined using X-ray powder diffraction and the method of optical second harmonic generation. In the region 0.35 ≤ x ≤ 0.75, phases R3c and R3¯c were present simultaneously. Refinement of the Ca8ZnGd(PO4)7 crystal structure with the Rietveld method showed that 71% of Gd3+ ions are in M3 sites and 29% are in M1 sites. A luminescent spectroscopy study of Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ indicated the energy transfer from the crystalline host to the Gd3+ and Eu3+ luminescent centers. The maximum Eu3+ luminescence intensity corresponds to the composition with x = 1.


Assuntos
Substâncias Luminescentes , Substâncias Luminescentes/química , Európio/química , Luminescência , Íons , Zinco
7.
Molecules ; 29(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38202708

RESUMO

A new series of Sr-based phosphates, Sr9-xMnxEu(PO4)7, were synthesized using the high-temperature solid-state method in air. It was found that these compounds have the same structure as strontiowhitlockite, which is a ß-Ca3(PO4)2 (or ß-TCP) structure. The concentration of Mn2+ ions required to form a pure strontiowhitlockite phase was determined. An unusual partial reduction of Eu3+ to Eu2+ in air was observed and confirmed by photoluminescence (PL) and electron spin resonance (ESR) spectra measurements. The PL spectra recorded under 370 nm excitation showed transitions of both 4f5d-4f Eu2+ and 4f-4f Eu3+. The total integral intensity of the PL spectra, monitored at 395 nm, decreased with increasing Mn2+ concentration due to quenching effect of Eu3+ by the Mn2+ levels. The temperature dependence of Eu2+ photoluminescence in a Sr9-xMnxEu(PO4)7 host was investigated. The conditions for the reduction of Eu3+ to Eu2+ in air were discussed.

8.
Materials (Basel) ; 15(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36234185

RESUMO

The structural and luminescence properties of undoped Y1-xScxPO4 solid solutions have been studied. An intense thermally stable emission with fast decay (τ1/e ~ 10-7 s) and a band position varying from 5.21 to 5.94 eV depending on the Sc/Y ratio is detected and ascribed to the 2p O-3d Sc self-trapped excitons. The quantum yield of the UV-C emission, also depending on the Sc/Y ratio, reaches 34% for the solid solution with x = 0.5 at 300 K. It is shown by a combined analysis of theoretical and experimental data that the formation of Sc clusters occurs in the solid solutions studied. The clusters facilitate the creation of energy wells at the conduction band bottom, which enables deep localization of electronic excitations and the creation of luminescence centers characterized by high quantum yield and thermal stability of the UV-C emission.

9.
Dalton Trans ; 51(31): 11840-11850, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866538

RESUMO

Na3.6Lu1.8-x(PO4)3:xEu3+ phosphors were synthesized by a high-temperature solid-state reaction. A powder X-ray diffraction study revealed that homogeneous solid solutions with a NASICON-type structure were formed at 0 ≤ x ≤ 0.7. The Na3.6Lu1.8(PO4)3 structure was refined from the powder X-ray diffraction data and the cation distribution in the lattice sites of the NASICON-type structure was revealed. The refinement indicates structural disorder caused by the displacement of a part of Lu cations along the c axis inside the (Lu/Na)O6 octahedra that is confirmed by the broadened emission lines of Eu3+, which substitutes Lu cations. The highest Eu3+ luminescence intensity is found in Na3.6Lu1.8-x(PO4)3:xEu3+ for x = 0.5, whereas a further increase of the Eu3+ content leads to concentration quenching that is shown to occur due to the dipole-dipole interaction. An enhanced temperature stability of the Eu3+ emission was observed at the excitation energy of 3.23 eV. At this excitation energy, thermal quenching of the emission caused by the 7F0 → 5L7 transitions is compensated by the intensity increase of the emission related to the 7F1 → 5GJ transitions, which occurs due to the increase of the 7F1 level population, induced by a temperature rise.

10.
Inorg Chem ; 61(20): 7910-7921, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35522973

RESUMO

This paper describes the influence of sintering conditions and Eu3+/Tb3+ content on the structure and luminescent properties of K5Eu1-xTbx(MoO4)4 (KETMO). KETMO samples were synthesized under two different heating and cooling conditions. A K5Tb(MoO4)4 (KTMO) colorless transparent single crystal was grown by the Czochralski technique. A continuous range of solid solutions with a trigonal palmierite-type structure (α-phase, space group R3̅m) were presented only for the high-temperature (HT or α-) KETMO (0 ≤ x ≤ 1) prepared at 1123 K followed by quenching to liquid nitrogen temperature. The reversibility of the ß â†” α phase transition for KTMO was revealed by a differential scanning calorimetry (DSC) study. The low-temperature (LT)LT-K5Eu0.6Tb0.4(MoO4)4 structure was refined in the C2/m space group. Additional extra reflections besides the reflections of the basic palmierite-type R-subcell were present in synchrotron X-ray diffraction (XRD) patterns of LT-KTMO. LT-KTMO was refined as an incommensurately modulated structure with (3 + 1)D superspace group C2/m(0ß0)00 and the modulation vector q = 0.684b*. The luminescent properties of KETMO prepared at different conditions were studied and related to their structures. The luminescence spectra of KTMO samples were represented by a group of narrow lines ascribed to 5D4 → 7FJ (J = 3-6) Tb3+ transitions with the most intense emission line at 547 nm. The KTMO single crystal demonstrated the highest luminescence intensity, which was ∼20 times higher than that of LT-KTMO. The quantum yield λex = 481 nm for the KTMO single crystal was measured as 50%. The intensity of the 5D4 → 7F5 Tb3+ transition increased with the increase of x from 0.2 to 1 for LT and HT-KETMO. Emission spectra of KETMO samples with x = 0.2-0.9 at λex = 377 nm exhibited an intense red emission at ∼615 nm due to the 5D0 → 7F2 Eu3+ transition, thus indicating an efficient energy transfer from Tb3+ to Eu3+.

11.
Inorg Chem ; 60(13): 9471-9483, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34132522

RESUMO

The influence of different synthesis routes on the structure and luminescent properties of KTb(MoO4)2 (KTMO) was studied. KTMO samples were prepared by solid-state, hydrothermal, and Czochralski techniques. These methods lead to the following different crystal structures: a triclinic scheelite-type α-phase is the result for the solid-state method, and an orthorhombic KY(MoO4)2-type γ-phase is the result for the hydrothermal and Czochralski techniques. The triclinic α-KTMO phase transforms into the orthorhombic γ-phase when heated at 1273 K above the melting point, while KTMO prepared by the hydrothermal method does not show phase transitions. The influence of treatment conditions on the average crystallite size of orthorhombic KTMO was revealed by X-ray diffraction line broadening measurements. The electrical conductivity was measured on KTMO single crystals. The orthorhombic structure of KTMO that was prepared by the hydrothermal method was refined using synchrotron powder X-ray diffraction data. K+ cations are located in extensive two-dimensional channels along the c-axis and the a-axis. The possibility of K+ migration inside these channels was confirmed by electrical conductivity measurements, where strong anisotropy was observed in different crystallographic directions. The evolution of luminescent properties as a result of synthesis routes and heating and cooling conditions was studied and compared with data for the average crystallite size calculation and the grain size determination. All samples' emission spectra exhibit a strong green emission at 545 nm due to the 5D4 → 7F5 Tb3+ transition. The maximum of the integral intensity emission for the 5D4 → 7F5 emission under λex = 380 nm excitation was found for the KTMO crashed single crystal.

12.
Inorg Chem ; 60(6): 3961-3971, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33646770

RESUMO

The series of ß-Ca3(PO4)2-type phosphors Ca9.5-1.5xMgEux(PO4)7 were synthesized by a solid-state route. Observation of the proper Eu3+ ion distribution in the Ca9.5Mg(PO4)7 host matrix was made by a direct method using 151Eu Mössbauer spectroscopy in combination with X-ray analysis and dielectric and luminescent spectroscopy. The photoluminescence properties were studied in detail. The samples exhibit an exceptionally narrow-band red emission according to the dominant 5D0 → 7F2 transition and fulfill the industrial requirements for high-energy-efficiency red phosphors. The contribution of Eu3+ ions in different crystal sites to the luminescent properties is discussed in detail. The difference of the excitation of Eu3+ in the M1 and M2 sites was revealed by photoluminescence excitation spectra in accordance with structure refinement. The temperature dependence of the luminescence intensity was studied. Different tendencies in the thermal behavior of emission lines allow one to consider the studied compounds as phosphors suitable for luminescence thermometry. The measured quantum yield for Ca9.5-1.5xMgEux(PO4)7 shows excellent results and reaches 63%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...